
STRIVR - M Byington

STRIVR Labs Baseball Project

Baseball simulation: finding the collision point between
sampled frames

Michael Byington
2016-03-08

1 Objectives

Figure 1: Baseball hit showing the position of the ball and bat in two sampled
frames before computing the collision time and location

Begin with 6 vectors, B̄0 and B̄f the initial and final positions of the baseball, Ē0 and Ē f the initial and
final positions of the end of the bat, and S̄0 and S̄f the initial and final positions of the knob of the bat. Given
linear interpolation between these vectors, we have two objectives:

1. Find the distance between the ball and bat as an explicit function of time and known position vectors,
d(t) = f (t, B̄0, B̄f , Ē0, Ē f , S̄0, S̄f)

2. Find the time of impact (if any) between t0 and t0 + ∆t, i.e. find t such that d(t) = 0.
Expressions for objectives 1 and 2 are at the ends of sections 2 and 5 respectively. See Eq (6) (objective ??)

and Eqs (15f) or (16f) (objective 2).

1

STRIVR - M Byington

2 Problem setup d(t)

Define B̄, S̄, and Ē as functions of t linearly interpolating between the initial and final values. This
produces t dependence of the form B̄ = (B̄f − B̄0)

t
∆t + B̄0. More explicitly:

B̄ =
©­­«


Bf ,x

Bf ,y

Bf ,z

 −


B0,x

B0,y

B0,z


ª®®¬

t
∆t
+


B0,x

B0,y

B0,z

 (1)

From Wolfram Alpha described in detail in section 7 or the geometrical derivation in section 6, the
distance between a point and a line (minus radii of the ball and the bat) is given by

d(t) =

��(B̄ − Ē) × (B̄ − S̄)
����S̄ − Ē

�� − rbat − rball (2)

where the single bars refer to the 2nd norm (or Euclidean norm) of the argument vector λ̄ with elements
1 to n, or in this case 1 to 3 (for 3 dimensional baseball).��λ̄�� = √

λ̄T λ̄ =

√∑
i

λ2
i =

√
λ2

0 + · · · + λ
2
n (3)

Now rewrite B̄ − Ē as a function of t:

B̄ − Ē = (B̄f − B̄0)
t
∆t
+ B̄0 − (Ē f − Ē0)

t
∆t
− Ē0

= (B̄f − B̄0 − Ē f + Ē0)
t
∆t
+ B̄0 − Ē0

= āt + b̄

(4)

Following that same sequence of rearranging and group the radii in one variable:

B̄ − S̄ = (B̄f − B̄0 − S̄f + S̄0)
t
∆t
+ B̄0 − S̄0

= c̄t + d̄
(5a)

S̄ − Ē = (S̄f − S̄0 − Ē f + Ē0)
t
∆t
+ S̄0 − Ē0

= ēt + f̄
(5b)

r = rball + rbat (5c)

Now we have d as an explicit function of t and collected variables:

d(t) =

��(āt + b̄) × (c̄t + d̄)
����ēt + f̄

�� − r (6)

2

STRIVR - M Byington

3 Simplify the denominator to the root of a polynomial

Begin with the denominator because it is less complex. The denominator is the length of a vector as a
function of t and can be expressed as the square root of a 2nd order polynomial:��S̄ − Ē

�� = ��ēt + f̄
�� = √∑

(eit + fi)2

=

√∑
(e2

i t2 + 2ei fit + f 2
i)

=

√√√√√√√[∑
e2
i 2

∑
ei fi

∑
f 2
i

] 
t2

t

1


(7)

Define ᾱ and t for convenience:

ᾱ =
∑ [

e2
i 2ei fi f 2

i

]

t̄ =


t2

t1

t0

 =


t2

t

1


(8)

��S̄ − Ē
�� = √ᾱt̄ (9)

Remember coefficients to polynomials (ᾱ here, and β̄, defined later in Section 4) are defined as
horizontal arrays or row vectors. t̄ is a vertical array or column vector of decreasing powers of tn−i for
i = [0,n] where n is the length of the coefficient array minus 1.

4 Simplify the numerator to the root of a polynomial

This will be more complicated but it’s just a lot of algebraic rearrangement:�� (āt + b̄
)
×

(
c̄t + d̄

) �� = ��(ā × c̄) t2 + {
(
b̄ × c̄

)
+

(
ā × d̄

)
}t +

(
b̄ × d̄

) ��
=

��������


...
...

...

(ā × c̄)
(
b̄ × c̄

)
+

(
ā × d̄

) (
b̄ × d̄

)
...

...
...




t2

t

1


��������

=

��� ¯̄Xt̄
���

(10)

Now here various cross products of ā, b̄, c̄, and d̄ are used to define the columns of ¯̄X . Remember that
¯̄Xt̄ is a column vector of 3 elements of the form

(
xi,1t2 + xi,2t + xi,3

)
:

3

STRIVR - M Byington

�� (āt + b̄
)
×

(
c̄t + d̄

) �� = √(
¯̄Xt̄

)T (
¯̄Xt̄

)
=

√∑1,2,3
i

(
xi,1t2 + xi,2t + xi,3

)2

=

√∑1,2,3
i x2

i,1t4 + 2xi,1xi,2t3 +
(
x2
i,2 + 2xi,1xi,3

)
t2 + 2xi,2xi,3t + x2

i,3

=

√∑[0,4]
n β4−ntn

=
√
β̄t̄

(11)

With β̄ and t̄ as:

β̄ =
∑1,2,3

i

[
x2
i,1 2xi,1xi,2

(
x2
i,2 + 2xi,1xi,3

)
2xi,2xi,3 x2

i,3

]

t̄ =



t4

t3

t2

t1

t0


=



t4

t3

t2

t

1


(12)

Notice that i only appears in the first subscript of x (i.e. xi,1 but never as x1,i) so the summation for β̄,
Eq (12), is just using i to move down the columns of ¯̄X one row at a time.

5 Set d (t) = 0 and solve for t

Before we begin we will reindex ᾱ (which has 3 elements) so it has a length of 5 and the first two elements
are 0:

ᾱ =
[

0 0 α0 α1 α2

]
(13)

And for the rest of this document t̄ has a length of 5. Notice that with this new ᾱ and a t̄ of length
5, ᾱt̄ produces the same result as it did with arrays of length 3, just with two additional terms of 0 in the
summation

(
0t4 + 0t3 + . . .

)
t̄ =



t4

t3

t2

t

1


(14)

4

STRIVR - M Byington

Now we can solve this very concisely with vectors to come up with a 4th order polynomial = 0:

d = 0 =
��(āt + b̄) × (c̄t + d̄)

����ēt + f̄
�� − r =

√
β̄t̄
√
ᾱt̄
− r (15a)

r2 =
β̄t̄
ᾱt̄

(15b)

r2 (ᾱt̄) = β̄t̄ (15c)

0 = β̄t̄ − r2 (ᾱt̄) (15d)

0 = β̄t̄ −
(
r2ᾱ

)
t̄ (15e)

0 =
(
β̄ − r2ᾱ

)
t̄ (15f)

Or we can use summations to obtain the same result much less elegantly:

d = 0 =
��(āt + b̄) × (c̄t + d̄)

����ēt + f̄
�� − r =

√∑[0,4]
n β4−ntn√∑[0,4]
n α4−ntn

− r (16a)

r2 =

∑[0,4]
n β4−ntn∑[0,4]
n α4−ntn

(16b)

r2
[0,4]∑
n

α4−ntn =
[0,4]∑
n

β4−ntn (16c)

0 =
[0,4]∑
n

β4−ntn − r2
[0,4]∑
n

α4−ntn (16d)

0 =
[0,4]∑
n

β4−ntn − r2α4−ntn (16e)

0 =
[0,4]∑
n

(
β4−n − r2α4−n

)
tn (16f)

Please notice that the only difference here is the notation, the meaning is identical, e.g. eqs. (15a) to (15f)
are exactly identical to eqs. (16a) to (16f) respectively.

The final result in equation (15f) or (16f) is a 4th order polynomial = 0. This can be solved with
any number of previously developed, efficient polynomial root finders such as NumPy (numpy.roots) using
the coefficients

(
β̄ − r2ᾱ

)
. The coefficient arrays, α and β, have been defined so that increasing index

corresponds to a decreasing power of t in keeping with the convention required by built in root finders in
NumPy and MatLab. Of the real values of t in the range [0,∆t], we are looking for minimum, i.e. the first
“kiss.”

The problem is now solved; the following sections explain the origin of Eq (2).

5

STRIVR - M Byington

6 Geometrical derivation of |d̄ |

The goal in sections 6 and 7 is to derive Eq (2) so as to understand it’s origin and verify it’s accuracy.
Section 6 employs mostly geometrical arguments while section 7 is entirely algebraic. The algebraic
derivation was copied from Wolfram Alpha but the geometric derivation is my own. When I first solved the
bat problem, I copied the Wolfram Alpha algebraic solution.

cross product is the area of a parallelogram formed
by 2 vectors in the direction normal to the plane of
those 2 vectors

Remember the d of interest is the length of the vector d̄, d =
��d̄��. Notice that |w̄ + z̄ | = |w̄ | + | z̄ | since w̄

and z̄ are parallel ‖:

A = |w̄ |
��d̄�� + | z̄ | ��d̄�� (17a)

= |w̄ + z̄ |
��d̄�� (17b)

=
��S̄ − Ē

�� ��d̄�� (17c)

Now in Eq (17a) we set the area, A, to the sum of the areas of the two pink triangles (|w̄ |
��d̄��) and the two

blue triangles (| z̄ |
��d̄��) and the cross product expression for A given in the figure:

A =
��S̄ − Ē

�� ��d̄�� = �� (B̄ − Ē
)
×

(
B̄ − Ē

) �� (18)

6

STRIVR - M Byington

Take the two expressions for A and solve for |d̄ |:

d =
��d̄�� = �� (B̄ − Ē

)
×

(
B̄ − Ē

) ����S̄ − Ē
�� (19)

7

STRIVR - M Byington

7 Algebraic derivation of |d̄ |

What follows is taken almost entirely from Wolfram Alpha, hopefully with notation improved for clarity
and consistency with this document. Beginning with Ē , S̄, and B̄, we would like to find the shortest distance
between B̄ and a line connecting Ē and S̄. This is the simple static problem (no functions of t), the solution
of which appears in a slightly modified form as Eq (2).

The line connecting Ē and S̄ may be defined by a parametric equation and a dummy variable λ:

L̄ =
(
Ē − S̄

)
λ + S̄

L̄ =
©­­«


Ex

Ey

Ez

 −


Sx
Sy
Sz


ª®®¬ λ +


Sx
Sy
Sz


(20)

��d̄ (λ)�� = ��L̄ (λ) − B̄
�� (21)

Find the minimum of
��d̄ (λ)�� by setting ∂|d̄ |

2

∂λ = 0 and solving for λ:��d̄ (λ)�� = �� (Ē − S̄
)
λ + S̄ − B̄

�� (22)��d̄ (λ)��2 =∑
i

[(Ei − Si) λ + (Si − Bi)]
2 (23)

∂
��d̄��2
∂λ

=
∑
i

[(Ei − Si) λ + (Si − Bi)] (Ei − Si) = 0 (24)

�� (Ē − S̄
) ��2 λ + (

S̄ − B̄
)
•

(
Ē − S̄

)
= 0 (25)

Solve for λ:

λ = −

(
S̄ − B̄

)
•

(
Ē − S̄

)��(Ē − S̄
) ��2 (26)

8

STRIVR - M Byington

Plug in λ and solve for
��d̄��2:��d̄��2 =

�� (Ē − S̄
)
λ + S̄ − B̄

��2
=

(
S̄ − B̄

)
•

(
S̄ − B̄

)
−2

(
Ē − S̄

)
•

(
S̄ − B̄

) (Ē−S̄)•(S̄−B̄)
(Ē−S̄)•(Ē−S̄)

+
(
Ē − S̄

)
•

(
Ē − S̄

) [
(Ē−S̄)•(S̄−B̄)

(Ē−S̄)•(Ē−S̄)

]2

=
��S̄ − B̄

��2 − 2 [(Ē−S̄)•(S̄−B̄)]
2

|Ē−S̄ |
2 +

��Ē − S̄
��2 [(Ē−S̄)•(S̄−B̄)]2

|Ē−S̄ |
4

=
|S̄−B̄ |

2
|Ē−S̄ |

2
−[(Ē−S̄)•(S̄−B̄)]

2

|Ē−S̄ |
2

(27)

Using the vector quadruple product (28):

| x̄ × ȳ |2 = | x̄ |2 | ȳ |2 − (x̄ • ȳ)2 (28)

To simplify the numerator (remember
��S̄ − Ē

�� = ��Ē − S̄
��):

��d̄��2 = �� (B̄ − Ē
)
×

(
B̄ − S̄

) ��2��Ē − S̄
��2��d̄�� = �� (B̄ − Ē

)
×

(
B̄ − S̄

) ����S̄ − Ē
��

(29)

9

	Objectives
	Problem setup d(t)
	Simplify the denominator to the root of a polynomial
	Simplify the numerator to the root of a polynomial
	Set d(t)=0 and solve for t
	Geometrical derivation of | bard |
	Algebraic derivation of | bard |

